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Abstract: In this note, we derive (to third order in derivatives of the fluid velocity)

a 2+1 dimensional theory of fluid dynamics that governs the evolution of generic long-

wavelength perturbations of a black brane or large black hole in four-dimensional gravity

with negative cosmological constant, applying a systematic procedure developed recently

by Bhattacharyya, Hubeny, Minwalla, and Rangamani. In the regime of validity of the

fluid-dynamical description, the black-brane evolution will generically correspond to a tur-

bulent flow. Turbulence in 2+1 dimensions has been well studied analytically, numerically,

experimentally, and observationally as it provides a first approximation to the large scale

dynamics of planetary atmospheres. These studies reveal dramatic differences between

fluid flows in 2+1 and 3+1 dimensions, suggesting that the dynamics of perturbed four

and five dimensional large AdS black holes may be qualitatively different. However, further

investigation is required to understand whether these qualitative differences exist in the

regime of fluid dynamics relevant to black hole dynamics.
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1. Introduction

A particularly fascinating aspect of gauge theory / gravity duality is that the high-

temperature deconfined phases of gauge theories are mapped via the correspondence to

black hole or black brane geometries on the gravity side [1]. This enables analytic cal-

culations of equilibrium properties of strongly-coupled gauge theory plasmas, such as the

deconfinement temperature or the high-temperature equation of state, via a classical anal-

ysis of the corresponding geometries.

In the past several years, the connection between gauge theory plasmas and black

geometries has also been exploited in the near-equilibrium regime. On the gauge theory

side, it is known that long-wavelength fluctuations about the equilibrium state at high

temperatures should be described effectively by fluid dynamics equations. Specifically,

near-equilibrium configurations may be characterized by a local temperature and a local

fluid velocity uµ, in terms of which the stress tensor of the theory can be written as a

derivative expansion,

T µν = p(T )ηµν + (ε(T ) + p(T ))uµuν + O(∂u, ∂T ) . (1.1)

The fluid dynamics equations are then simply the local conservation equations for this

stress tensor

∂µT µν = 0 . (1.2)
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The information that distinguishes different field theories in this regime is the set of coeffi-

cients appearing in the derivative expansion of the stress tensor, namely the energy density

and pressure at zeroth order, the shear viscosity and bulk viscosity at first order, etc. . . .

While the energy density and pressure are equilibrium quantities, which may be read

off from the dual Euclidean black-brane geometry, the viscosities and all higher order

coefficients are only relevant for time-dependent processes, and their computation requires

a real-time analysis. The first calculation of viscosity appeared in [3], where the authors

were able to determine the viscosity of maximally supersymmetric gauge theory plasma

using a Kubo-type formula, i.e. by studying the low-frequency limit of real-time correlation

functions for the stress tensor. Following this, there have been a host of works exploring the

fluid dynamics description of high temperature gauge theories with gravity duals (see [12]

for a recent review), motivated in part by the fact that the high-temperature behavior

of these theories appears to be qualitatively similar to real QCD. Indeed, this AdS/CFT

analysis currently provides the best understanding of certain properties of the quark-gluon

plasma produced experimentally in heavy-ion collisions at RHIC.

Recently, Bhattacharyya, Hubeny, Minwalla, and Rangamani [2] have developed a

more direct approach for determining the effective fluid dynamical description of a near

equilibrium gauge theory plasma with a weakly curved gravity description. This approach

provides a systematic way to determine the coefficients in the derivative expansion of the

stress-energy tensor to an arbitrary order, and the explicit gravity solution dual to a given

solution of the fluid dynamics equations.

The idea of [2] is simply to start with the black brane solution dual to an equilibrium

plasma with uniform temperature T and velocity ~β, allow the temperature and velocity pa-

rameters in the metric to be arbitrary slowly-varying functions of the field theory directions,

and try to add corrections to this metric order by order in the derivatives of temperature

and velocity so that the corrected metric is a valid solution to Einstein’s equations. This

perturbative procedure works subject to certain constraints on the temperature and ve-

locity fields; these constraints turn out to be exactly the conservation relations (1.2) for a

particular choice of coefficients in the derivative expansion (1.1) of the stress-energy tensor.

In [2] this procedure was carried out in the case of five-dimensional gravity to determine the

complete set of fluid dynamics coefficients up to second order in the derivative expansion.

The result for the viscosity matched previous computations, and a subset of the second

order coefficients they compute are reproduced using correlation function methods in [4],

which appeared simultaneously.

1.1 Results

It is worth emphasizing that the calculations in [2] are purely within the context of Einstein

gravity with a negative cosmological constant, and do not assume in any way the correctness

of gauge theory / gravity duality or any connection to a dual field theory. Thus, the results

are also interesting from the perspective of better understanding classical gravitational

physics. To reiterate, they say that generic long-wavelength perturbations around a black

brane solution in AdS (or, as we will discuss below, a large AdS black hole) are described

by fluid dynamics equations. Of course, nonlinear fluid dynamics is extremely difficult
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to study in general, but decades of analytical, numerical, and experimental research have

provided us with a good qualitative understanding and some general quantitative laws for

the behavior of fluids in various regimes. We can therefore hope to apply what is known

about fluid dynamics to learn new qualitative and quantitative lessons about the generic

behavior of gravity in this nonlinear regime.

To apply these ideas to the most familiar case of 3+1 dimensional gravity, a first step

is to generalize the work of [2] (which focused on 3+1 fluid dynamics and therefore 4+1

dimensional gravity) to one lower dimension. This is the main technical goal of the present

paper.

Before giving our results, it will be useful to define exactly what we mean by the tem-

perature field and the velocity field associated with a given field theory (or more generally,

with a given stress tensor). For a given point x in the fluid, there will be some velocity

βi(x), such that an observer at x moving with this velocity will observe T 0i(x) = 0. We

define the proper velocity for this point to be uµ(x) = (1, ~β(x))/(1 − β2(x))1/2, and we

define the temperature for this point to be the temperature observed by the comoving ob-

server (the temperature related by the equilibrium equation of state to the energy density

T 00(x) as measured in the comoving frame). This definition of velocity may be expressed

covariantly as

uµ(T µν + uνuαT µα) = 0 .

With these definitions of velocity and temperature, our result is that the evolution

of long-wavelength perturbations to the uniform black-brane solution of 3+1 dimensional

gravity with negative cosmological constant is described by the conservation equations (1.2)

where the stress energy tensor to second order in the derivative expansion is

T µν =
1

2

(

4πT

3

)3

(ηµν + 3uµuν) −
(

4πT

3

)2

σµν (1.3)

+
1

18

(

4πT

3

)

[

(
√

3π − 9 ln(3) + 18)Σµν
1 + 2(

√
3π − 9 ln(3))Σµν

2

]

The terms beyond leading order are traceless symmetric tensors which vanish when con-

tracted with uµ. Defining the operator

Pµν = ηµν + uµuν (1.4)

which projects vectors in the directions orthogonal to u and

Πµν
αβ =

1

2
Pµ

α P ν
β +

1

2
Pµ

β P ν
α − 1

2
PµνPαβ (1.5)

which project tensors into traceless symmetric tensors orthogonal to uµ, we have

σµν = Πµν
αβ

(

∂αuβ
)

ωµν =
1

2
Pµ

α P ν
β

(

∂αuβ − ∂βuα
)

Σµν
1 = Πµν

αβ

(

Dσαβ +
1

2
σαβ∂λuλ

)

Σµν
2 = Πµν

αβ(σλ
αωβλ) (1.6)
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where D ≡ uα∂α. From the expression above, it is straightforward to check that the ratio

of viscosity (−1/2 times the coefficient of σ) to entropy density (which works out to 1/T

times the coefficient of uµuν) comes out to the universal [14 – 16] value of 1/(4π), first

shown in this case by [5].

As reviewed in [4, 8], the AdS isometries (or equivalently, the conformal symmetry

of the dual fluid) require that the fluid stress tensor is traceless and covariant under a

Weyl transformation of the boundary metric (i.e. the metric of the space on which the dual

fluid lives, which we take to be 2+1 dimensional Minkowski space). The two structures

Σ1 and Σ2 turn out to be the only traceless u-orthogonal Weyl-covariant structures at

two-derivative order relevant for a flat-space theory. In higher dimensions, there are four

such structures [4, 8], but two of these (the ones associated with parameters λ1 and λ3 in

the notation of [4]) vanish identically for 2+1 dimensional fluid dynamics. In the notation

of [4], our results for the second order coefficients are

τπ =
1

24πT
(
√

3π − 9 ln(3) + 18)

λ2 =
4πT

27
(
√

3π − 9 ln(3))

The result for τπ agrees exactly with the calculations of [6, 7], who computed this using

real-time correlation functions, while our result for λ2 is new.

In addition to our expression for the stress tensor, which through the conservation

equations gives the equations for the effective fluid dynamics to third order in the derivative

expansion, the other main technical result is the equation (2.15), which gives the explicit

metric dual to an arbitrary solution of the fluid dynamics equations, valid to second order

in derivatives.

1.2 Possible qualitative differences between four and five dimensional black

hole evolution

The derivative expansion we have presented should be a good description when the length

scale L of perturbations is much larger than the inverse temperature

LT ≫ 1 . (1.7)

In this limit, the most important terms are the leading terms in the derivative expansion,

and these are the terms conventionally included in studies of fluid dynamics. While our

calculations explicitly refer to perturbations around a uniform black-brane solution, dual to

an unbounded fluid, the same fluid dynamics on a sphere of radius R ≫ 1
T should describe

the evolution of perturbations around a large AdS-Schwarzschild black hole (i.e. one whose

radius is large compared with the length scale of AdS curvature).1

1This follows from a simple AdS/CFT argument, since a thermal CFT on Minkowski space dual to the

black-brane arises from the same CFT at finite temperature on a sphere in the limit of large sphere volume

and fixed temperature. The CFT on sphere with R ≫ 1/T is dual to a large AdS black hole, and this CFT

should have locally the same long-wavelength physics as the flat-space one, since correlation lengths in this

limit will be much smaller than the sphere size.
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At the level of the equations of motion, our results look very similar to the ones obtained

in [2] for 4+1 dimensional gravity. Despite the similarity of the equations, the relation to

fluid dynamics suggests that there could be dramatic differences between the physics of

large AdS black holes in four versus five dimensions. To understand these, we first note

that the regime LT ≫ 1 where our derivative expansion is valid is also the regime of large

Reynolds number (where the viscous terms are small relative to the leading order terms),

so we expect that generic evolution of the long-wavelength perturbations about the black

brane will correspond to fluid flows in the turbulent regime. In 3+1 dimensions, turbulent

flows are characterized by an “energy cascade” in which large scale eddies give rise to smaller

scale eddies, tending towards configurations of increasing disorder and transferring energy

down to scales where viscosity becomes important and energy is dissipated (converted to

heat). Thus, 3+1 dimensional fluids are rather efficient at dissipating initial fluctuations,

regardless of how small the viscosity is. For a basic review of fluid dynamics and turbulence,

see [9, 10].

In contrast, turbulent flows in 2+1 dimensional fluids are characterized by an “inverse

cascade,” in which smaller scale eddies merge into large scale eddies, eventually creating

large persistent vortical structures from which the energy is dissipated only very slowly,

since the dissipative terms are relatively unimportant at large scales (see section 9.7 of [10],

and also [11]). In unbounded systems the late-time behavior for generic initial conditions

is believed to be a “dilute gas of vortices” while in bounded systems (such as fluid flow on

a sphere), the flow evolves to a single vortex or a small number of vortices with size com-

parable to that of the system. These two-dimensional phenomena are relevant in nature,

since two-dimensional turbulence provides a first approximation to large scale motions in

planetary atmospheres, and also to the evolution of large-scale oceanic currents (examples

of the persistent vortical structures include intense tropical storms, the polar vortices, and

the Great Red Spot of Jupiter).

These qualitative differences between two and three dimensional fluid dynamics sug-

gest that the evolution of generically perturbed AdS black holes may exhibit significant

qualitative differences between two and three dimensions. Taken at face value, the results

of the previous paragraphs would suggest that black brane and large black-hole configu-

rations in five-dimensional gravity with negative cosmological constant equilibrate much

faster than those in four dimensions, and furthermore, that the late-time behavior for

generic perturbations around a four-dimensional black brane or large AdS4 black hole will

be characterized by the formation of long-lived large-scale vortical structures, related to

the more familiar ones observed in planetary atmospheres .

However, there is an important caveat.2 The fluid dynamical results we refer to are

valid in the context of Navier-Stokes equations for non-relativistic fluids which have p ≪ ǫ

(in analytical and numerical studies, the fluids are usually also taken to be incompressible).

On the other hand, the fluids we discuss have pressure and energy density of the same

order of magnitude; in other words, they are microscopically relativistic. For such fluids,

2I would like to thank Veronika Hubeny and Mukund Rangamani for motivating me to understand this

better.
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the equations of motion differ from Navier-Stokes equations even in the limit where all the

macroscopic velocities are small (see [9], chapter XV). It is plausible that the qualitative

differences between two and three dimensional fluid dynamics are not just restricted to

the Navier-Stokes regime. However, before making any specific conclusions about about

differences between four and five dimensional black hole evolution, it will be important to

understand whether the qualitative differences we have noted (or other differences) exist in

the regime where the fluids are microscopically relativistic. A recent discussion highlighting

some features of two-dimensional turbulence in relativistic fluids has appeared in [17].

It is interesting to ask whether any of this discussion is applicable to astrophysical

black holes (which should behave like small black holes in AdS). Unfortunately, the present

analysis doesn’t shed any light on this question, since for ordinary Schwarzschild black

holes (or small AdS black holes), the length scale associated with temperature is just the

size of the black hole. Thus, the condition (1.7) for the validity of the hydrodynamic

approximation cannot be satisfied; equivalently, all higher order terms in the expansion of

the stress-energy tensor are equally relevant.

1.3 String theory applications

While we have emphasized that our results are apply completely within the context of

four-dimensional gravity, there are also important applications within the context of string

theory using the AdS /CFT correspondence. According to the correspondence, the fluid

dynamical theory we have worked out provides the effective description of long-wavelength

perturbations around the thermal equilibrium state for any 2+1 dimensional conformal

field theory with a weakly curved gravity dual, provided that Einstein gravity with negative

cosmological constant is a consistent truncation of the corresponding gravity theory. The

simplest example is the SO(8) conformal field theory that provides the worldvolume theory

of a large number of M2-branes in M-theory. For this theory (and other theories) there are

locally conserved charges in addition to the energy and momentum. The fluid description

we have found applies to neutral fluctuations about the uncharged equilibrium state, but it

should be straightforward to determine a more complete effective theory which allows for

nonzero charge densities by applying a similar analysis starting with a charged black-brane

solution.

1.4 Outline

The remainder of this paper is organized as follows. In section 2, we present the perturba-

tive calculation of the metric for a generic non-singular perturbation of the 3+1 dimensional

black-brane solution to second order in the derivative expansion, and derive the associated

constraints on velocity and temperature fields. In section 3, we use our expression for the

metric to calculate the boundary stress tensor, using the prescription of [13]. This stress

tensor is interpreted as the stress tensor of the dual fluid, and we find that the constraint

equations found in section 2 coincide with the conservation equations for this stress tensor,

expanded to second order in derivatives.

– 6 –
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2. Construction of the perturbed solution

In this section, we apply the methods of [2] to perturbatively construct a solution of Einstein

gravity with negative cosmological constant dual to an arbitrary solution of particular 2+1

dimensional fluid dynamics equations that we will also construct in the process.

2.1 Unperturbed metric

We begin with Einstein’s equations in 3+1 dimensions with negative cosmological constant

RIJ − 1

2
gIJR − λgIJ = 0 , (2.1)

where for convenience, we choose units such that λ = 3. The uniform black brane solution

corresponding to a temperature T is3

ds2 = 2dvdr − r2f(br)dv2 + r2d~x2

where4

f(r) = 1 − 1

r3
b =

3

4πT
.

Boosting this solution to a proper velocity uµ along the ~x directions, we obtain the

three-parameter family of solutions

ds2 = −2uµdxµdr − r2f(br)uµuνdxµdxν + r2Pµνdxµdxν (2.2)

where uµ is the proper velocity

u0 =
1

√

1 − ~β2

ui =
βi

√

1 − ~β2

and Pµν = ηµν + uµuν is the projection into the directions orthogonal to u, defined so that

uµPµν = 0.

This solution depends on the temperature T and velocity ~β, so we have a map between

equilibrium configurations of a fluid moving at constant velocity and uniform black-brane

solutions. We would now like to extend this correspondence to near-equilibrium config-

urations in which the temperature and velocity of the fluid are allowed to vary in space,

evolving in time according to fluid dynamics equations. Thus, we now promote b and β

to general functions of space and time (assumed to vary slowly on the scale 1/T ) in the

metric (2.2), and try to add corrections to this, order by order in derivatives of b and β,

such that the corrected metric is a solution to Einstein’s equations (2.1). As in [2], we will

find that this is possible as long as b(xµ) and β(xµ) satisfy fluid dynamics equations with

particular choices for the pressure, energy density, viscosity, and higher order coefficients.

3These coordinates, introduced in [2] are related to more typical coordinates where the metric is diagonal

by a coordinate transformation v = t + h(r), where h′(r) = 1/(r2f(r))
4As usual, the relationship between temperature and the parameter b may be determined by demanding

that there is no conical singularity in the Euclidean continuation when the Euclidean time direction is

chosen to have periodicity 1/T .
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2.2 Overview of perturbation theory

We now review the perturbative procedure developed in [2]. At each order, we begin with

a metric g(n−1) depending on b(xµ) and β(xµ) which solves Einstein’s equations up to

terms involving n− 1st derivatives of b and β, but for which terms in Einstein’s equations

involving nth and higher derivatives do not cancel. For n = 1, the metric is just the one

in (2.2) with b and β taken to depend on space and time. We then try to add an nth order

metric g(n) such that the complete metric solves Einstein’s equations up to nth order in

derivatives.

Throughout the perturbative procedure, we work with the gauge choice [2]

grr = 0 grµ ∝ uµ (g(0))µνg(n>0)
µν = 2g(n)

rv +
1

r2
g
(n)
ii = 0 (2.3)

The metric is further constrained by the requirement that its components gµr and gµν must

transform as a vector field and a tensor field under 2+1 dimensional Lorentz transforma-

tions where uµ and b are taken to transform as vector and scalar fields. This follows from

the covariance of the leading order metric and the covariance of Einstein’s equations. The

most general covariant metric at nth order in derivatives satisfying our gauge condition is

(ds2)(n) =
kn

r2
uµuνdxµdxν − 2hnuµdxµdr − r2hnPµνdxµdxν

−2

r
(jn)νuµdxµdxν + r2(αn)µνdxµdxν (2.4)

where we may choose

uµjµ = 0 uµαµν = 0 ηµναµν = 0 .

Here kn(r, uµ(x), b(x)), hn(r, uµ(x), b(x)), jµ
n(r, uµ(x), b(x)) and αµν

n (r, uµ(x), b(x)) are ex-

pressions involving a total of n derivatives of uµ(x) and b(x), that transform respectively

as two scalar fields, a vector field, and a symmetric traceless tensor field when uµ and b are

taken to transform as vector and scalar fields under 2+1 Lorentz transformations. Note

that the only dependence of these functions on the coordinates xµ is through the functions

b(xµ) and u(xµ).

In order to determine the functional dependence of k, h, j, and α on r, b, and u, it

is enough to solve Einstein’s equations at any particular point, so we choose to work at

xµ = 0 and further, take coordinates where b(0) = 1 and βi(0) = 0.

In this case, the extra terms (2.4) that we add at nth order in perturbation theory

reduce to

(ds2)(n) =
kn(r)

r2
dv2 + 2hn(r)dvdr − r2hn(r)dxidxi +

2

r
ji
n(r)dvdxi + r2αij

n (r)dxidxj

Using this undetermined expression and the results from lower order, we now take

g = g(0) + . . . g(n),

Taylor expand about x = 0 to nth order in derivatives of b and β, plug into Einstein’s

equations, which may be rewritten as

WIJ ≡ RIJ + 3gIJ = 0 , (2.5)

– 8 –
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and try to choose hn, kn, ji
n, and αij

n so that all terms with n derivatives cancel (terms

with less than n derivatives will cancel assuming that we have correctly carried out the

perturbative procedure at lower orders). We will find that this is possible so long as b(x) and

β(x) obey certain constraint equations, which amount to the equations of fluid dynamics

with specific coefficients for pressure, energy density, viscosity, etc. . .

2.3 General structure of perturbation theory

Carrying out the procedure above, we find that at nth order in perturbation theory, the

functions hn, kn, ji
n and αij

n may be determined by the four equations

W (n)
rr = 0 =⇒ 1

r4

d

dr
(r4h′

n(r)) = S
(n)
h (r)

r4f(r)W (n)
rr − W

(n)
ii = 0 =⇒ d

dr

(

− 2

r
kn(r) + (1 − 4r3)hn(r)

)

= S
(n)
k (r)

W
(n)
ri = 0 =⇒ r

2

d

dr

(

1

r2

d

dr
~jn(r)

)

= ~S
(n)
j (r)

W
(n)
ij − 1

2
δijW

(n)
ii = 0 =⇒ d

dr

(

− 1

2
r4f(r)

d

dr
αij

n (r)

)

= S(n)
α (r)

(2.6)

where W
(n)
IJ denotes all n derivative terms in WIJ (defined in (2.5)) and the equations on

the right come from dividing these terms into those that arise from g(n) and those that

arise from lower order terms in the metric.

The general solution to these equations is given by the specific solution

hn(r) =

∫

∞

r

dx

x4

∫

∞

x
dyy4S

(n)
h (y)

kn(r) = −r

2

∫

∞

r
dxS

(n)
k (x) +

r

2
(1 − 4r3)

∫

∞

r

dx

x4

∫

∞

x
dyy4S

(n)
h (y)

~jn(r) = 2

∫

∞

r
dxx2

∫

∞

x

dy

y
S

(n)
h (y)

αn =

∫

∞

r

2dx

x4f(x)

∫

∞

1
dyS(n)

α (y) (2.7)

plus the general solution to the homogeneous (source-free) equations,

hn(r) = sn +
tn
r3

kn(r) = unr +
tn
2r2

− 2r4sn

~jn(r) = ~an +
~bn

3
r3

αn = cn +
1

3
dn ln

(

r2 − 1

r

)

. (2.8)

With our choice for the the specific solution, it turns out that we can/must set all coefficients

in the homogeneous solution to zero. First, we must set sn, ~bn, cn and dn to zero in order

to get a nonsingular solution that preserves the original asymptotics. The constant tn may

be set to zero by a coordinate transformation r → r + tn/(2r2) that preserves our gauge

choice. The coefficients un and ~an may be adjusted freely by redefinitions of b and ~β. But

– 9 –
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we chose to fix the definitions of b and β by demanding that uµT µν = 0. For any non-zero

un or ~an, this condition is violated, so we must demand that these constants vanish. Then

the b and β that appear in the metric are directly related to the inverse temperature and

velocity of the fluid.

Once we have solved for h, k, j, and α at a given order, the remaining four equations

Wrv = Wvv = Wvi = 0 give rise to constraints on the set of n-derivative expressions

built from temperature and velocity. These constraints turn out to be precisely the fluid

dynamics equations

∂µT µν

Taylor expanded to nth order in derivatives about the point x = 0. The constraints at

order n involve the stress tensor at order (n− 1), which can be computed as the boundary

stress tensor of the metric obtained at the previous order in perturbation theory.

Given the solutions for h, k, j, and α we can write the metric at order n in the

derivative expansion. From this, we can calculate the boundary stress-energy tensor (which

we interpret as the stress-energy tensor of the dual fluid) at order n, using the prescription

of [13] reviewed in section 3.

In the next two subsections, we provide explicit details of the perturbative calculation

at first order and second order in derivatives.

2.4 First order

At first order, the source terms in equation (2.6) are

S
(1)
h = 0

S
(1)
k = −4r∂iβi

~S
(1)
j = −1

r
∂v

~β

S(1)
α = 2rσ

where

σij =
1

2

(

∂iβj + ∂jβi −
1

2
δij∂kβk

)

.

With these sources, the metric components at first order may be calculated using (2.7) and

give

h1(r) = 0

k1(r) = r3∂iβi

~j1(r) = r2∂v
~β

α1 = 2σF (r) ∼ σ

(

2

r
− 2

3r3
+ O(r−4)

)

where

F (r) = −
√

3

3
Tan−1

(√
3

3
(2r + 1)

)

+
1

2
ln

(

1 +
1

r
+

1

r2

)

+

√
3π

6
. (2.9)
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With these assignments, we find that the remaining Einstein equations are satisfied if and

only if

∂vb =
1

2
∂iβi

∂ib = ∂vβ (2.10)

These are the terms obtained at first order in derivatives in the conservation equation

∂µT µν = 0, where we need only keep the non-derivative terms in the expression (1.3) for

T .

2.5 Second order

To discuss the results at second order, it is useful as in [2] to catalogue all the scalar,

vector, and traceless symmetric tensor terms built from b and β at two-derivative order,

since these are the expressions that will appear in the second order metric. We find:

Scalar Vector Tensor

S1 = ∂2
vb V1i = ∂v∂ib T1ij = ∂i∂jb −

1

2
δij∂

2b

S2 = ∂2
i b V2i = ∂2

vβi T2ij = ∂vσij

S3 = ∂v∂iβi V3i = ∂i∂jβj T3ij = ∂vβi∂vβj −
1

2
δij(∂vβk)

2

S4 = ∂vβi∂vβi V4i = ∂2βi T4ij = ∂kβi∂kβj −
1

2
δij(∂kβl)

2

S5 = (∂iβi)
2 V5i = ∂vβi∂jβj T5ij = ∂iβk∂jβk − 1

2
δij(∂kβl)

2

S6 = (ǫij∂iβj)
2 V6i = ∂vβj∂iβj

S7 = σijσij V7i = ∂vβj∂jβi (2.11)

Here, we have excluded pseudoscalar, pseudovector and pseudotensor terms, since these

will not appear in the metric. Also, note that in 2+1 dimensions, we have

σij∂kβk =
1

2
(T4ij + T5ij)

∂kβ(i∂j)βk − 1

2
δij∂kβl∂lβk =

1

2
(T4ij + T5ij)

so we do not need to include the structures on the left, which are independent in higher

dimensions.

The Einstein equations at second order in derivatives have a solution provided that

the following constraints are satisfied

S1 =
1

2
S3 −

1

2
S4 +

1

4
S5

S2 = S3 + S4 −
1

2
S6 + S7

V1 =
1

2
V3 +

1

2
V5 −

1

2
V6
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V2 =
1

2
V3 +

1

2
V5 −

1

2
V6 − V7

T1 = T2 + T3 +
1

4
T4 +

1

4
T5

∂v∂[iβj] =
1

2
∂kβk∂[iβj] . (2.12)

In addition, the first order constraint (2.10) must be corrected to include higher order

terms

∂vb =
1

2
∂iβi −

1

3
S7

∂ib = ∂vβ − 1

3
V4 −

2

3
V5 +

2

3
V6 . (2.13)

It may be checked that the four constraints (2.13) and the nine constraints (2.12) are

exactly the 4+9 equations arising from the equations ∂µT µν |x=0 = 0 and ∂α∂µT µν |x=0 = 0

expanded to second order in derivatives.5

Taking into account the constraints, we can now write the second order source terms

in equation (2.6) in terms of the independent two-derivative expressions and solve for the

metric at second order. We have

S
(2)
h = − 1

2r4
S6 + F1(r)S7

S
(2)
k = 2S3 +

1

2
S5 − 2(1 +

1

r3
)S6 + F2(r)S7

~S
(2)
j =

1

2r2
V3 −

1

2r2(1 + r + r2)
V4 −

r2 + r − 1

2r2(r2 + r + 1)
(V6 − V5)

S(2)
α = F3(r)(T2 + T3) + F4(r)T4 + F5(r)T5 (2.14)

where

F1(r) =
2(1 + 2r)

r2(r2 + r + 1)2
F (r) − (r + 1)2

r2(r2 + r + 1)2

F2(r) = 2F (r)
1 + 3r + 4r2 − 4r3 − 6r4 − 4r5

r2(1 + r + r2)
+

4r3 + 4r2 + 2r − 1

r(1 + r + r2)

F3(r) = 2rF (r) − 2r(r + 1)

r2 + r + 1

F4(r) = −r

2
F (r) − 1

2(r2 + r + 1)

F5(r) =
3

2
rF (r) − 2r2 + 2r − 1

2(r2 + r + 1)

and F (r) was defined in (2.9).

With these sources, the metric components at second order are given by the expressions

in (2.7). For our purposes of calculating the second order stress tensor, we only need to

5In [2], the temperature field b was decomposed into terms b(n) such that the constraints set term b(n)

equal to a sum of n derivative terms involving β without any further corrections. Our b corresponds to

their
P

n
b(n).

– 12 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
6

know the asymptotic behavior of the various functions for large r. We find:

h2(r) =
1

r2

(

1

2
S7 +

1

4
S6

)

+ O(r−4)

k1(r) = r2

(

S7 +
1

2
S6 −

1

4
S5 − S3

)

+ O(r0)

~j1(r) = r

(

− 1

2
V3 −

1

2
V5 +

1

2
V6

)

+ O(r−1)

α1 =
1

2r2
(T5 − T4) +

1

r3

(

1

12

(
√

3π

9
−ln(3) + 2

)(

4T2+4T3 − T4 + 3T5

)

+
1

3
(T4 − T5)

)

+O(r−4)

In all these expressions, the higher order terms do not give any finite contributions to the

boundary stress tensor.

2.6 Covariant form of the metric

We have now derived complete expressions for the functions h, k, j, and α appearing in the

expression (2.4) for the metric corrections at first and second order in derivatives. However,

to derive these expressions, we have been working at a particular point x = 0 with a choice

of coordinates where b(0) = 1 and βi(0) = 0. To recover the general expression for the

metric without these assumptions, we only need to rescale coordinates r → br, xµ → xµ/b

and find Lorentz covariant expressions k, h, jµ, and αµν that reduce to our expressions

above in the frame where βi(0) = 0.

The final result for the metric is

ds2 = −2uµdxµdr − r2f(br)uµuνdxµdxν + r2Pµνdxµdxν

+r∂λuλuµuνdxµdxν − ruλ∂λ(uµuν)dxµdxν + 2r2bF (br)σµνdxµdxν

+
k2(br)

b2r2
uµuνdxµdxν − 2b2h2(br)uµdxµdr − r2b2h2(br)Pµνdxµdxν

− 2

br
j2ν(br)uµdxµdxν + b2r2αµν

2 (br)dxµdxν (2.15)

where k2, h2, j2 and α2 are defined in terms of the sources (2.14) by (2.7), and we replace

the expressions S, V, and T built from derivatives of β with the covariant ones given by

S3 = uµ∂µ∂νuν −DuµDuµ

S4 = DuµDuµ

S5 = (∂µuµ)2

S6 = −(ǫµνλuµ∂νuλ)2

S7 = σµνσµν

V3µ = P σ
µ (∂σ∂νuν −Duν∂σuν)

V4µ = P σ
µ P ρν∂ρ∂νuσ

V5µ = P σ
µ ∂νu

νDuσ

V6µ = P σ
µ Duν∂σuν
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T µν
2 = Πµν

αβ

(

D∂αuβ
)

T µν
3 = Πµν

αβ

(

DuαDuβ
)

T µν
4 = Πµν

αβ

(

∂ρu
α∂ρuβ + DuαDuβ

)

T µν
5 = Πµν

αβ

(

∂αuρ∂βuρ

)

.

Here, Pµν and Πµν
αβ were defined in (1.4) and (1.5) and D ≡ uα∂α.

3. Stress tensor

The boundary stress-energy tensor (which we associate with the stress-energy tensor of the

dual fluid) may be computed using the prescription of [13], as

T µν = lim
r→∞

(r5(Θµν − γµνΘ − 2γµν − Gµν))

Here, Θµν is the extrinsic curvature for the surface of constant r, which may be calculated

as

ΘIJ = ∇IvJ − vIvK∇KvK

where vK is the vector field of unit vectors normal to the surface of constant r, determined

by

gIµvI = 0 gIJvIvJ = 1 .

All other tensors are constructed using the boundary metric γµν induced on the surface at

fixed r, and Gµν is the Einstein tensor calculated from this metric (with indices raised by

γ).

Using the metric we have derived, it is straightforward to calculate the stress tensor

to second order in derivatives. Note that one derivative and two derivative terms in the

metric gµν of order r and 1 respectively give rise to potential divergences in the stress-

energy tensor (scaling as r2 and r respectively), but these all cancel. The only terms

contributing to the finite part of the stress tensor are the 1/r terms in gµν , which include

the zero-derivative terms proportional to uµuν and the one and two-derivative terms in

the symmetric traceless spatial terms in the metric (i.e. the αij terms). The final result

for the stress tensor to two-derivative order is given as equation (1.3). It may be checked

that the structures appearing at second order may be written in terms of the covariant

two-derivative tensors defined in the previous section as

Σ1 = T2 + T3 +
1

4
T5 +

1

4
T4

Σ2 =
1

4
T5 −

1

4
T4; .
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